LINEARE FUNKTIONEN: BEISPIELAUFGABEN

Gegeben ist die Funktionsgleichung y = 4x - 5

Fall 1:

Gegeben ist außerdem ein Punkt P_1 (3 | y). (Der y-Wert soll also berechnet werden.)

Vorgehensweise:

$$y = 4 \cdot x - 5$$
 Funktionsgleichung $y = 4 \cdot 3 - 5$ Funktionsgleichung in die Funktionsgleichung eingesetzt.

y = 12-5 ausrechnen y = 7 Ergebnis

Der y-Wert beträgt also 7. Der Punkt P₁ hat somit die Koordinaten P₁ (3 | 7).

Fall 2:

Gegeben ist außerdem ein Punkt P_2 (x | -7). (Der x-Wert soll also berechnet werden.)

Vorgehensweise:

$$y = 4 \cdot x - 5$$
 Funktionsgleichung

$$-7 = 4 \cdot x - 5$$
 | + 5 Der y-Wert -7 wird in die Funktionsgleichung eingesetzt. Es folgt eine Äquivalenzumformung.

$$-2 = 4 \cdot x$$
 | : 4

$$-0.5 = x$$
 Ergebnis

Der x-Wert beträgt also -0.5. Der Punkt P_2 hat somit die Koordinaten P_2 (-0.5 | -7).

Fall 3:

Gegeben sind außerdem die Punkte P_3 (2 | 4) und P_4 (5 | 15). Liegen diese Punkte auf dem Graphen der Funktionsgleichung?

Vorgehensweise:

y=
$$4 \cdot x - 5$$
Funktionsgleichung4? $4 \cdot 2 - 5$ Der x-Wert und der y-Wert werden in die Funktionsgleichung eingesetzt. Rechte Seite der Gleichung ausrechnen.4 \neq 34 ist ungleich 3, \Rightarrow der Punkt P_3 liegt nicht auf der Geraden.y= $4 \cdot x - 5$ Funktionsgleichung

$$P_1$$
 (-2|y) P_2 (3|y) P_3 (1|y) P_4 (0,5|y) P_5 (-0,5|y) P_6 (-4|y) P_7 (5|y)

2. Gegeben ist die Funktionsgleichung y = 3x - 4.

$$P_1(x|2)$$
 $P_2(x|-7)$ $P_3(x|-4)$ $P_4(x|8)$ $P_5(x|5)$ $P_6(x|-10)$ $P_7(x|0)$

3. Gegeben ist die Funktionsgleichung
$$y = 6x - 12$$
. Liegen die Punkte auf dem Graphen? $P_1(2|0) \qquad P_2(3|1) \qquad P_3(-2|-4) \qquad P_4(1|-6) \qquad P_5(-1|18) \qquad P_6(0,5|-10) \qquad P_7(0|-12)$